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We establish the relationship between n-symplectic geometry on the bundle of linear 
frames LM of an n-dimensional manifold M and canonical symplectic geometry on the 
cotangent bundle T’hf. We show that all basic features of the canonical symplectic geometry 
of polynomial observables on T’M are induced from the ,z-symplectic geometry on LM. 
Moreover, the Cx bundle Lx over T’M associated with geometric quantization theory is 
identified with a fiber bundle associated to the principal bundle of afftne frames AM of the 
manifold M. Viewing AM as a principal R” bundle over LM we show that the connection 
on Lx used in geometric quantization theory is induced from a canonical connection on 
AM that is constructed from the IT-valued n-symplectic potential. We then show that the 
connection preserving vector fields on Lx that are related to linear polynomial observables 
on PM are also induced from connection preserving vector fields on AM. 
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1. Introduction 

The bundle of linear frames LM of an n-dimensional manifold M plays an 
especially important role in the theory of the differential geometry of the mani- 
fold [ l-3 1. This is so since once the concepts of linear connection and exterior 
covariant differentiation with respect to a linear connection are defined on LM, 
one may then use these ideas to induce connections and covariant differentia- 
tion on the tensor bundles T,‘M over the manifold. The basic unifying element 
is the fact that each tensor bundles T,‘M may be considered as a fiber bundle 
associated to LA4 via the standard action of the structure group GL(n ) of LM 
on TrW. 

W;th this in mind one is led to ask if it is possible to trace other geometrical 
structures on tensor bundles back to the bundle of linear frames LM. Consider 
in particular the canonical symplectic structure on the cotangent bundle T’M 
that is the basic building block of Hamiltonian dynamics when A4 is the con- 
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figuration space of a mechanical system. The canonical symplectic structure on 
T’M is dr9, where 19 is the canonical one-form that plays the role of a globally 
defined symplectic potential. Since T’M may be considered as the associated 
bundle LM xGL(,I) R”’ one may ask if 19 has its roots in a more basic structure 
on LM. The obvious candidate for a generalized symplectic potential on LM 
is the UP-valued soldering one-form 8 since the definitions of 8 and 19 are so 
similar. This observation led the author to investigate whether or not one may 
use the vector-valued soldering one-form 19 as a generalized symplectic potential, 
and the basic features of the geometry on LM that one may build up based 
on the generalized symplectic structure d6’ may be found in ref. [4]. The gen- 
eralized symplectic geometry based on the pair (LM, de ) will be referred to 
as n-sjlmplectic geometry. The fact that de is R”-valued rather than R-valued 
introduces new and interesting features into the geometry. 

More recently the exact relationship between the canonical one-form 6 on 
T’M and the soldering one-form 8 on LM was provided by Sniatycki. He showed 
[5] that 

B~(~,,,)~ 03 = (e,,(x),4 . (1.1) 

In this equation u = On, e) denotes a point in LM that corresponds to the 
linear frame e = (ei) at 171 E M, and [ (U,(Y) ] denotes a point (equivalence 
class) in T’M thought of as the associated bundle LM xo~(~) UP’. In addition 
x is a tangent vector at [ (u, a) ] that projects to the same vector as does the 
tangent vector X at (m,e), and the brackets denote that natural inner product 
of elements of [w” and R”‘. Thus the fundamental building block 8 for canonical 
symplectic geometry on T’M is induced from the soldering one-form 8 on LM. 
This raises the question: To what extend is the symplectic geometry on T’M 
induced from the n-symplectic geometry on LM? The purpose of this paper is to 
provide some answers to this question. What we will show is that the symplectic 
geometry of polynomial observables on (T’M, dt9) is induced from n-symplectic 
geometry on (LM, de). In addition the symplectic action of Diff (M) on T’M 
together with the associated momentum mapping will be shown to be induced 
from an n-symplectic action of Diff (M) on LM and an associated n-momentum 
mapping. 

Since the subalgebra of polynomial observables on T’M plays a distinguished 
role in the theory of geometric quantization [6,7] on T*M, the above results 
suggest that the geometrical structures related to the Cx bundle Lx + T’M 
in geometric quantization theory might also be traceable back to LM. Indeed, 
we will show that Lx may be constructed as a fiber bundle associated to the 
bundle of affine frames AM of M thought of as a principal [w” bundle over LM. 
Moreover, the basic connection on Lx used in geometric quantization theory 
will be shown to be induced from a connection on AM + LM constructed 
from the n-symplectic potential. The results presented here will thus provide a 
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foundation for a geometric quantization theory based on n-symplectic geometry. 
The structure of the paper is as follows. In section 2 we provide a survey of the 

basics of n-symplectic geometry on the frame bundle LM of an n-dimensional 
manifold M, and the symmetric PlfP-valued observables on LM are shown 
to induce the homogeneous polynomial observables on T’M. Then in section 
3 we develop the concept of momentum mappings in n-symplectic geometry. 
The natural action on LM of the the group Diff (M) of diffeomorphisms of 
the base manifold M is an n-symplectic action in the sense that it leaves dtl 
invariant. This action of Diff (M) on LM is then shown to induce the standard 
symplectic action of Diff (M) on (T’M, d19), and the associated n-symplectic 
momentum mapping is shown to induce the standard momentum mapping on 
T*M associated with Diff (M). 

In section 4 we consider a basic problem for a geometric quantization theory 
based on (LM, d r3 ) . We use the n-symplectic potential 8 to construct a canonical 
connection (T on the R” principal bundle AM + LM, and use the connection 
to lift the Hamiltonian vector fields on LM of rank 1 observables associated 
with the n-momentum mapping determined by Diff (M). We thereby obtain an 
isomorphism of the Lie algebra of rank 1 observables on LM with a Lie algebra 
of connection preserving vector fields on AM. This isomorphism provides the 
correct Dirac canonical quantization rules for the n-symplectic momentum and 
position type variables. 

In section 5 we define a left action of the affine group A (n ) = GL( n ) M R” on 
R”’ x Cx and then show that the associated fiber bundle to AM + A4 determined 
by this action may be identified with the trivial Cx bundle rr : Lx -t T*M 
used in geometric quantization theory. Using a standard technique we then 
use the connection u on AM -+ LM to induce a connection 6 on Lx. This 
induced connection is the connection Z* (29) + (2ni)-‘dz/z used in geometric 
quantization theory on T*M. We show that the vector fields on Lx that are 
used to construct the quantum operators for the linear polynomial observables 
on T*M are induced from corresponding vector fields on AM --) LM. We 
also show in section 5 that the Hamiltonian vector fields of symmetric tensorial 
observables on LM map to Hamiltonian vector fields on T’M. Section 6 consists 
of a set of examples of specific n-symplectic momentum mappings, and in section 
7 we present conclusions and a discussion of future work. 

2. Survey of n-symplectic geometry on LM 

The principal fiber bundle rr,,,{ : LM d M of linear frames of an n-dimensi- 
onal manifold M is the set of pairs (M, ei ) where (ei ), i = 1,2, . . . , n is a linear 
frame at m E M. The dimension of LM is the even number n (n + 1 ), and the 
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general linear group GL(n) acts on LA4 on the right by 

(m,ej) . g = (nz,ejgj) (2.1) 

for each g = (g,!) E GL(n). Let (xl) be a coordinate chart on U c M. Define 
canonical coordinates (xi, xi ) on ir = XL,; (U) c LM by 

X’(WZ,ei) = Xi(W), 

7li(l?Z,ei) = ei(d/dxk), (2.2) 

where (e’) denotes the coframe dual to (ei). Moreover in (2.2) we follow stan- 
dard conventions and write xi in place of xi o x,,,. 

Let (Yi), i = 1,2,. .., n, denote the standard basis of R”. Then the P-valued 
soldering one-form 8 = t9’ri on LM may be defined by 

0 (Xt,) = u-’ (tin,,,, (X,1 ) , X,, E T&M, (2.3) 

where u = (~2, ei) E LA4 is viewed as the non-singular linear map u : R” -+ 
T n,,,(ujM given by u(t’ri) = tiei. 

The theory of n-symplectic geometry on LM developed in ref. [4] is based 
on generalizing the basic structure equation 

df = -X, -I d19 (2.4) 

on T’M to (LM,dO). In (2.4) f denotes any smooth R-valued function on 
T’M. Since d8 is OX”-valued the range of the variables changes in lz-symplectic 
geometry. The simplest generalization of (2.4) is 

df:=-Xi -I de, (2.5) 

where now f is a smooth KY-valued function on LM. We note that de is non- 
degenerate in the sense that 

XJ de=OeX=O. (2.6) 

Hence if a vector field XI satisfies (2.5 ) for a given lK!“-valued function f then it 
will be unique. On the ot ii er hand the soldering one-form 0 transforms tensorially 
under right translations R, for g E GL( n) according to R;e = g-’ s 8. A 
consequence of this tensorial nature of 0 is that not every lP-valued function 
on LM is compatible with eq. (2.5). On the other hand all smooth R-valued 
functions on T’M are compatible with eq. (2.4). 

Let T’ denote the set of FP-valued functions f on LA4 that transform tensori- 
ally under right translation by R;f = g-l . f. Such functions are in one-to-one 
correspondence with vector fields on M. Denote by HF’ the set of R”-valued 
functions on LM that are compatible with (2.5). In ref. [4] it is shown that 

HF’ = T’ aa C=‘(M,[W”), (2.7) 
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where the second factor denotes the smooth R”-valued functions on LM that are 
invariant on fibers. For each f E HF’ eq. (2.5) assigns a unique Hamiltonian 
vector field Xi. The Poisson bracket off, S E HF’ is defined by 

{“A,} = Xf(S) I (2.8) 

and HF’ is a Lie algebra under this bracket. Denote by HV’ the set of Hamil- 
tonian vector fields Xi determined by elements of HF’. Then one shows that 

(2.9) 

so that H V’ forms a Lie algebra. 
From (2.5) it is clear that the constant R”-valued functions in C” (M, R”) c 

HF’ are all mapped to the zero vector field. Identifying these constant functions 
with I&!” we have that as Lie algebras 

HV’ = HF’/W . (2.10) 

Strictly speaking the bracket defined in (2.8) is not a Poisson bracket but 
simply a Lie bracket. However the bracket becomes a true Poisson bracket when 
HF’ is combined with the higher rank observables. We denote the vector space 
of symmetric &‘R”-valued tensorial functions on LM by 

STP={.~:LM-,~R”Ij:(u.h)=h-‘.~(zO V!zhGL(n)}, 

where & denotes the symmetric tensor product, and denote the vector space of 
symmetric rank p contravariant tensor fields on M by SXP. An element of STP 
corresponds to a unique element of SXP. We denote by ST = C,“=, STP the 
infinite dimensional vector space which is the direct sum of the vector spaces 
STP. 

An element f E STp determines [4] an equivalence class [Xi jj of (“z”T’) 
vector fields [Xi JI ““‘ip--l via the Iz-symplectic structure equation 

dfi,...i, = -p,x~~4-~ 1 de&,) 
. .f 9 (2.11) 

where round brackets on indices denote symmetrization. We note that although 
d0 is non-degenerate in the sense of (2.6), because of the symmetrization in 
(2.11) the non-degeneracy is lost. For a given j E STP eq. (2.11) only deter- 
mines the vector fields Xi.‘“‘ip-’ 

.f 
up to addition of vector fields Y’l”.‘p-l satisfying 

the kernel equation 
y(ii.~,i,-l J deip) = 0 . (2.12) 

If a set of vector fields Yil...i~--l satisfies (2.12) then each vector field Y’I”“P-1 
must be vertical. For a given f E STP eq. (2. I 1) thus determines an equiv- 
alence class of ~3~ P-‘W-valued Hamiltonian vector fields ( [Xf ] i”“ip-’ ), where 

two &-‘R”-valued vector fields are equivalent if their difference satisfies eq. 
(2.12). 
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An element .f = fili”“‘pri, Qs I’i2 . . ’ 8x Yip E STP has the local canonical 
coordinate representation 

filiz...iP = fjij2-.h ts jnj: x;; . . . nl; . (2.13) 

The associated equivalence classes of Hamiltonian vector fields [[X.f I] i’i2’%--l 
determined by eq. (2.11) have the local coordinate representations [4] 

where the components T~l”“‘iP-‘b must satisfy 
T(iliz,,.it,-lb) 

a = 0 (2.15) 

but are otherwise arbitrary. 
The fact that one obtains equivalence classes of vector fields rather than vector 

fields for the higher rank observables does not interfere with the basic algebraic 
structures in n-symplectic geometry. For each p > 1 the set of equivalence classes 
of &‘-I W-valued vector fields on LM, with equivalence defined as above, forms 
an infinite dimensional vector space. Denote by HV(STJ’) the vector subspace 
of c$-‘W-valued equivalence classes of vector fields determined by elements s 
of STP by eq. (2.11). For f E STP and S E ST4 define the Poisson bracket 
{ , } : STP x ST4 + STP+q-’ by 

ii> 21 
ili2...iP+p-l 

= p!J+ (ili~.~~i,-, 
( 

,‘A+ I ...iP+q-I) 
)J 

(2.16) 

Where Xiili2’-ip-l is any representative of the equivalence class lXi 1 i’i2”‘ip--l. 
The bracket so defined is easily shown to be independent of the choice of rep- 
resentatives and has all the properties of a Poisson bracket. In particular the 
bracket acts as a derivation on the commutative algebra (ST, ~8~). Moreover, 
when the bracket defined here is reexpressed on the base manifold M, it gives [4] 
the differential concomitant of Schouten and Nijenhuis [8,9] of the symmetric 
tensor fields corresponding to f and 2. In summary we have: 

Theorem 2.1. The space ST ofsymmetric tensorial zero-forms on LM is a Poisson 
algebra with respect to the Poisson bracket defined in (2.16). 

It is convenient to introduce the multi-index notation 

ri,i2...ip-k E I’j, CQs ri2 . . . @S ripek forO<ksp-1. 

Let 

[if] = [[Xi~i~i2”‘ip~1~~l~2...~,~, , [iin = I[X~~ili2”‘iq~‘I.j,j2...ip-l 
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denote the vector valued equivalence classes of vector fields determined by f E 
STP and g E STq. Define a bracket by 

[[j?], [yin ] = [ [Xjp-iP-l ) ~~~~iPin+l”~~P+12]ri,i2,,,i~+l-2 

= [Xf iliz-4-l , xkipip+l.-ip+q-2 ]ri,i2,,,ip+q-2 , (2.17) 

where the last bracket on the right-hand side is the ordinary Lie bracket of vector 
fields calculated using arbitrary representatives. One shows that 

[Xi iliz...i,-l , xkiPiP+, “‘ip+q-2 ]I.i, j *... jp+p-2 E [TXtj,gl 1 , (2.18) 

and thus the bracket defined in (2.17) is well defined, and we write 

mymini = u-qi,gln. (2.19) 

Moreover, the bracket detined in (2.17) is anti-symmetric. Denote the direct 
sum of the vector spaces HV(STP) by HV(ST). 

Theorem 2.2. The vector space HV (ST) of vector valued equivalence classes of 
Hamiltonian vector fields on LM is a Lie algebra with respect to the bracket 
de$ned in (2.17). 

Formula ( 1.1) above shows that the canonical one-form on T’M is induced 
from the soldering one-form on LM. We show here that the polynomial observ- 
ables on T*M are induced from related objects on LM. In particular elements 
of STP induce degree p homogeneous polynomial observables on T’M as fol- 
lows. Consider T’M as the associated bundle LM XoL(,,) KY’*. Then for { E STP 
define r : T’M -, R by 

fm44) = (hh%...,4, (2.20) 

where there are p factors of a, [u, CX] E T*M, u = (m, ej) E LM, and the 
brackets denote the extended natural inner product of elements of R” and R”‘. 
The tensorial character of f guarantees that this definition is independent of 
choice of representatives of the equivalence class [u, CX] . 

From (2.2) we note that 

7lj(l?Z,ek)Qi = e’(d/dXj)cki = pj(e'CVi), 

where (pj) are the standard momentum coordinates on T*M defined by the 
local chart (xi) on M. Then, for example, for p = 2 take f = f’jri @‘s rj, where 
f’j = f”b(~)rr6rr{. The definition (2.20) yields 

.T([~~,ej,~il) = fub(X)PaPb T (2.21) 

which is a homogeneous quadratic polynomial observable on T*M. At the end 
of section 5 we show that the equivalence class of Hamiltonian vector fields 
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[X.i I] for .[ E STP may be mapped to the Hamiltonian vector field Xf off on 

T‘M, where -7 is induced from f as in (2.20). 
In general, it can be observed that n-symplectic geometry selects “allowable 

observables” in the sense that not every &P-valued function on LM is com- 
patible with (2.11). It is known [4] that the most general &R”-valued function 
on LM that can satisfy (2.11) for some set of vector fields must be a polynomial 
in the momentum coordinates with coefficients in the set of functions that are 
invariant on fibers on LM. We denote this set by SHFP. For a given p 2 1 the 
homogeneous degree p polynomials in SHFP form the set STP, while for p > 2 
the lower degree polynomials do not in general correspond to elements of ST4 
for 0 5 q < p. The reader is referred to ref. [4] for more details. 

3. n-symplectic momentum mappings 

In the applications of symplectic geometry to classical and quantum mechanics 
the concept of momentum mapping [lo] plays an especially important role. In 
classical mechanics it provides a geometrization of conservation laws associated 
with Hamiltonian systems with symmetries, and in geometric quantization the 
momentum mapping on T’ IV associated with the action of Diff (M) is funda- 
mentally related to the geometrization of the Dirac canonical quantization pro- 
cedure. Here we introduce the concept of momentum mappings in !z-symplectic 
geometry on (LM, dt?). In the following an tz-symplectic action of a Lie group 
G on LM is an action that preserves the n-symplectic form de. 

Definition 3.1. Let @ : G x LM -+ LM be an n-symplectic action of a Lie group 
G on the ?r-symplectic manifold (LM, de). Then a mapping J : LM + G’ 8 R” 
is a momentum mapping if for each < E B 

dj({) = -<* J d8, (3.1) 

where <* is the infinitesimal generator of the action of G on LM generated by 
5, and j (5) : LM + R” is defined by 

j(OW = (J(u),<). (3.2) 

The brackets in (3.2) denote the natural inner product of elements of 9* and 6. 

This definition generalizes the definition of momentum mapping on a general 
symplectic manifold, the main difference being that the range is now G* @ R” 
rather than G*. This generalization of the range of the momentum mapping is 
similar to the generalization that occurs in multisymplectic geometry [ 11,121. 
Consider the example [ 111 of a first order parameterized field theory formulated 
on the first jet bundle J’ Y of jets of sections of a bundle rrxy Y --t X over an 
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n + 1 dimensional base manifold X. The Langragian density is a bundle map 
L: J’Y + ,4”+‘X with range the bundle of (n + 1 )-forms on X, and one uses 
C to construct the Cartan (n + 1 )-form 8~ on J1 Y. If there is a gauge group 
G acting on Y by automorphisms in such a way that L is equivariant under the 
prolongation of G to J’Y, then 8~ will be G-invariant. In this setting there is 
[ 111 an associated nndlirnomentun~ mapping JL : J’ Y + 4’ ~3 A” (J’ Y). The 
author is indebted to the referee for pointing out this similarity between the 
n-symplectic and multisymplectic formalisms. 

To obtain a specific example of an n-symplectic momentum mapping we con- 
sider the Lie group G = Diff (M) of diffeomorphisms of the base manifold 
M. The Lie algebra 4 of Diff (M) is the set of smooth vector fields on M. Let 
0 : G x M + A4 denote the group action. This action lifts to a left action of G 
on LM in a natural way [ 11. For each f E G the associated map @f : M + M 
induces a mapping @/ : LM + LM defined by 

~f(Wei) = (@fO~),@.f*(ei)). (3.3) 

Then the action & : G x LM -+ LM of G on LM is 6 (f, u) = 6~ (u) for 
u E LM. It is known ( [ 11, page 226) that the soldering one-form 0 is invariant 
under this action. Hence the action of Diff (M) on LM defined in (3.3) is an 
n-symplectic action. 

Next consider a vector field X E G. X generates a local one-parameter group 
qr of local diffeomorphisms of M, which in turn lifts to a local one-parameter 
group Fl of local diffeomorphisms of LM. The infinitesimal generator X’ of $!jl 
is referred to as the natural lift of X [ 11. It follows from Lx- 8 = 0 that 

d(X* J e) = -x* J de. (3.4) 

Moreover since R,, (X*) = X’ it follows that X’ J 8 E T’ c HF’. Hence 
the subset Ti of rank 1 Hamiltonian functions HF’ on LM is uniquely related 
to the group Diff (M). 

We can now exhibit a momentum mapping associated with the action of 
Diff (M) on LM. For each vector field X E B define j(X) : LM + Iw” by 

j(X) = 2, (3.5) 

where ,? is the R”-valued tensorial function in T’ uniquely determined by X. In 
particular k = X’ J I!?. As discussed above we know that 

d(X) = -x* J de, (3.6) 

so that (3.5) satisfies the definition of an n-symplectic momentum mapping. 
We observe that the set of all j(X) for X E g is 4hus the subset T’ c HF’ 
discussed is section 2. 
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Following Abraham and Marsden [lo] we use the notation 

n(x) := l(X) (3.7) 

and refer to n(X) as the n-nlonlentum corresponding to X. The value of the 
n-momentum n(X) at a linear frame u = (in,ej) is 

flLY)(u) = e’(X(7rL,,l(u))ri, (3.8) 

which gives the IF!” components of X with respect to the linear frame tl = (nz, ei ). 
These ideas can be related to the standard notions on T*&f associated with 

Diff (n4). We first show that one may use the n-symplectic action of Diff (M) 
on LM to induce the standard symplectic action of Diff (nii) on the symplectic 
manifold (T*M, d&). We again consider the cotangent bundle as the associated 
bundle LA4 x GL(,,) UP’ so that points in T’M are equivalence classes [ (u, a) ] for 
u E LA4 and 0 E R”‘. We use the n-symplectic action ~8 : Diff (A!) x LM + LA4 
to induce a left action d : Diff (Ali) x T’M + T’M by defining 

acf, [(&~)I) = Pa(f,~),~l . (3.9) 

Because 6 is a left action on LA4 it is easy to see that this definition is indepen- 
dent of choice of representatives. Using the identification [ (z~, (u) ] * u ((Y) = 
(177, eiQi ) for u = (m, e;) one can show that this action on T’M is the standard 
symplectic action associated with Diff (M) (see, for example, ref. [ lo], page 
283). 

The n-symplectic momentum mapping discussed above can be used to induce 
the momentum mapping on T*M associated with Diff (M) as follows. For each 
vector field X on M define the map P(X) : T’M + R by 

PM)([wal) := WW)(l~),cu), (3.10) 

where the brackets now denote the natural inner product of elements of UP and 
KY’. It is not difficult to show that P(X) defined here is the momentum of X as 
defined on page 283 in ref. [lo]. Hence the symplectic action of Diff(M) on 
T’M and the associated momentum mapping are induced from the rz-symplectic 
action of Diff(M) on LM and the n-symplectic momentum mapping defined 
in (3.5) above. 

We provide the interpretation of conservation laws associated with n-sym- 
plectic momentum mappings. First a preliminary lemma. Let f = firi E T’ 
and i = g’jri 8 ri E ST2, let Xf be the Hamiltonian vector field of j, and 
let [Xi JJ = [Xi 1’I.i be the equivalence class of KY-valued Hamiltonian vector 
fields of g. 

Lemma 3.1. If { g, f} = 0 then for each i = 1,2,. . . ,17, fi is constant on the 
orbits ofeach Xii E [Xi 1’ . 
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ProoJ Let F,’ be the flow of Xii E [[X,1’. Then 

(d/&)(f’oF,‘) = (F,‘)‘(L&)‘) 

= (F,‘)” (xii(p)) 
= (F,‘)*uf){ayi)~ (3.11) 

This vanishes iff {f, i}” = 0, which is true when {i, i} = 0. Moreover this is 
true for each Xii E [Xi jj i since the Poisson bracket is independent of choice of 
representative. Cl 

We now consider the situation where g E ST’ is a Hamiltonian tensor, and i 
is invariant under some Lie subgroup G of Diff (M) (see section 6 for an explicit 
example). The proof of the following theorem is given in the appendix. 

Theorem 3.1. Let @ be an n-syrnplectic action of a subgroup G of Diff (M) on 
(LM, de) with n-momentum mapping J. Suppose g E ST2, i : LM + R” @~[w”, 
is invariant under the action, that is, 

g(@,,(u)) = g(u) for all u E LM, h E G. (3.12) 

Then J provides n integrals of jj in the sense that 

J’(F,‘(u)) = J’(u), (3.13) 

where F,’ is the flow of any Xii E [Xi n i, i = 1,2,. . . , n. 

There is an obvious extension of these results to the case where g E STP for 
P L 3. 

4. Connections on fi : AM - LM 

In section 2 we saw that the kernel of the map f + Xf for f E HF’ is the set 
of constant IW”-valued functions in the set C’” (M, R” ). Following the example 
[ 61 of geometric quantization based on symplectic geometry on T’M we seek to 
lift the set of Hamiltonian vector fields H V1 to a Lie algebra of vector field E’ 
on a bundle over LM in such a way that we obtain a Lie algebra isomorphism 
between HF’ and fil. We will show that the affine frame bundle of a manifold 
is an appropriate bundle to accomplish this task. 

Let AM denote the principal fiber bundle of affine frames [l-3] over an n- 
dimensional manifold M. A point w E AM is a triple (m, ei, u ), where (ei ) is a 
linear frame at rn E M and u is a tangent vector at m. The vector v is the “origin” 
of the affine frame. The semi-direct product afflne group A (n ) = GL (n ) K R” 
acts on AM on the right by 

(Wl,ei,U) * (g,T) = (m,eigj,V + ei<‘) (4.1) 



for each (g,<) = ((gj),<‘) E A(/?). 
There is a canonical embedding 1’ : LM -+ .-1M of LM into AA4 given by 

1’ (~1, ef ) = (m, pi, 0), and an associated canonical projection mapping p : 
AM --) LM given by p (I??, pi, ‘2) ) = ( UZ, ei). The existence of the maps y and p 
implies [ 1 ] that .4M is a trivial principal R” bundle over LM. 

In the following it will be convenient to have available the following canonical 
coordinates on AM. Let (.Y’) be a coordinate chart on U c M, and define 
canonical coordinates (si, q!) on 0 = rr-* (CT) c LM as in (2.2). On 0 = 
p-’ (0) c AM define canonical coordinates (si, rc~,.V’) by 

s’(in,e,,u) = s’(m), 

7$,(m,ej,u) = ej(d/ds”), 

JJa(l?l,ei,V) = e”(v) . (4.2) 

Note that the coordinates ~1’ on AA4 are globally defined. 
The bundles LM and AA4 support two invariantly defined forms. The R”- 

valued soldering one-form 0 = eiri on LM was defined above in (2.3). In the 
canonical coordinates (2.2) 8 has the local coordinate representation 

e = (TCjdXj)l., . (4.3) 
We introduce here the P-valued canonical zero-fo).I?? A = ;i’ri on AA4 defined 
by 

tl(ll?,ei,Zl) = e’(2)rI.i , (4.4) 
It is evident from (4.2) and (4.4) that A has the local coordinate representation 

J = JJil’i . (4.5) 
In the following we will need the particular connection on the principal 178” 

bundle AMLLM given in the following lemma. 

Lemma 4.1. The W-valued one-form [T = p*e + d2 is a connection on the bundle 
AMLLM. The curvature C of 0 is the W-valued two-form 

C = da = j?*(dO) . (4.6) 

We will also need the fundamental vertical vector fields on AM. For each 
5 = c’ri in the Lie algebra R” of the group IP let rl; denote the associated 
fundamental vertical vector field on ,4M. The explicit coordinate representation 
for q is 

tje = giala.$. (4.7) 
Next suppose that f = f’ri : LM --t R”. For each such function we define a 
vertical vector field r/i on AM by the formula 

‘lf (W) = ll.i(/L?(cu)) (w) = (.P(pw)a/a.#. (4.8) 
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Let X be a vector field on AM. Then X is horizontal with respect to the 
connection 0 iff cr (X) = 0. The local coordinate expression for such a horizontal 
vector field is 

X = A’A + Bj$ - n;Aj& . (4.9) 

If X = Ai a/as’ + Bj a/87$ is a vector fieid on LM then its horizontal lift X# 
to AM with respect to CJ is given by (4.9), where the components A’ and Bj are 
pull-ups under j3 of functions defined on LM. Finally we recall that the vertical 
part of a tangent vector X at w E AM may be expressed as 

ver(X) = vo(x) = ‘I,, J u) . (4.10) 

We now wish to characterize the vector fields on AA4 that preserve the connec- 
tion one-form 0 introduced above. The techniques used here follow those used 
by Sniatycki [ 6 1. Let < be a vector field on AM such that LCU = 0. Expanding 
this equation we have 

[J da+d([J a) =o. (4.11) 

Evaluating this on the fundamental vertical vector field Q we find 

q(l J fJ) = 0, (4.12) 

since the curvature da is horizontal. Hence the R”-valued function i 1 c is 
constant on fibers of AM so that we may express it as 

(-I c-fop (4.13) 

for some R”-valued function f on LM. From (4.10) and (4.13) we find that 
the vertical component ver (i) is given by 

ver(i) = qf. (4.14) 

Using (4.13) and (4.14) backin (4.11) with[ = ver([)+hor([),wherehor([) 
denotes the horizontal part of c, we find 

d(f o /I) = -her(i) 1 da 

= -her([) _I P*(de) . (4.15) 

Hence her(<) is the horizontal lift Xi’ to AM of the vector field Xi on LM 
determined by the n-symplectic structure equation 

dj‘ = -Xi -I de. (4.16) 

The result is the following. The set fi’ of all vector fields C on AM that 
preserve the connection ~7 is a Lie algebra under Lie bracket. If C E @’ then 

~+=x)#+~/ (4.17) 

for some UP-valued function f on LM, where Xr is determined by (4.16). 
Now eq. (4.16) is the rz-symplectic structure equation on (LM, de), and from 
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the general theory we know that the set of W-valued functions on LM that is 
compatible with (4.16) is the subset HF’ = 7” $ C” (IV, IX” ) of C” (LM, R” ). 
Moreover, by direct calculation one shows that [ii, [,I = [ ti,s) 

Theorem 4.1. The set of vector fields on AM that preserve the connection a is 
composed of vector fields of the form (4. I 7) for f E HF’ . Moreover, the map 

j- / -i- (4.18) 

-for f E HF I defines a Lie algebra isomorphism between (HF’, { , }) and 
(=I, 1 , I). 

Finally we consider the locally defined position and momentum variables 
,U’ = xiri (no sum on i) and irj = x:r,. From (2.14) withp = 1 we obtain the 
associated Hamiltonian vector fields 

X.$, = -a/alrj ) xi, = a/ax’ . (4.19) 

Using (2.8) we have {?ci,+?j} = G!ri. Then using (4.19) together with (4.8) we 

Following ref. [ 6 ] we define the associated prequantization operators by 

P.;-, = -Sic,, , P,, = -Sri,, . (4.21) 

Defining the quantum commutator as the negative of the Lie bracket of vector 
fields, [Pi,Ps]p = -[Pj,Pg], we now find 

[pk,,p,+ IQ = ifip{I;,,.;.,) , (4.22) 

which are the quantum canonical commutation relations. 

5. Lx + T’M as a fiber bundle associated to AM 

Let @” denote the non-zero complex numbers c, and denote elements of R”* 
by a: = (aj). Then it is straightforward to check that the mapping 

@:A(n) x (OX’* XC”) -R”* xCx 

defined by 

@(k,t), (a,c)) = ((g-‘)~cli,c.exP(27Li(g-‘)~rjCui), V (g,t) E A(n), 
(5.1) 

is a left action. Using this left action we can define an associated bundle in the 
standard way, namely 

E := AM X,~(~) (W* x C”) . (5.2) 
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Points in this bundle, as a bundle over the base space M, are equivalence classes 

[((mei,v), (w,c))l 
with equivalence defined as follows: 

(5.3) 

((m,ei,v), (w,C)) N ((~~~,ei,v)~ (h,t), (h,t)-‘. (ai,C)) (5.4) 

for all (11, <) E A (II ). Working out the right-hand member using (5.1) we find 

((m,ei,w), (ai,c)) N ((m,eihj,W + edi), (hjaj,c.exp(-21rirncr,)). (5.5) 

Note that only the GL( 12 ) c A (n ) element (hj ) acts on the R”* factor, and that 
only the R” c ii(n) element (5’) acts on the Cx factor. We can use this fact 
to show that this bundle E can be viewed as a principal cx bundle over the 
cotangent bundle. 

Let Lx = Lx ( T’i~1, cx ) denote the trivial cx principal fiber bundle over the 
cotangent bundle. Define a map p : E -, Lx as follows: 

p([((wei,v), (w,c))l) = ((m,eioi),C.exp(2~iea(v)cu,)). (5.6) 

The range is clearly correct and we need only check that the image of an equiv- 
alence class is independent of choice of representative. Using (5.5) we find 

p ([(17Z,eihj,W + ei(‘), (hjCYi,C’exp(-27ci~aa,)]) 

= ((m,e’(h-‘)j(hpa,)), 

c. exp(-2zi<‘Cy,) . exp(27ri(h-‘)j,e’(v + e&b)hfak)) 

= ( (m,eicui),c.exp(2~i[--raa, + ea(w + e&)oO])) 

= ((1)2,eiai),c.exp(27ci[-racu, + ea(21)cr, + ~“CX~)])) 

= ((ln,eiai),c.exp(2~iea(v)cr,)) . (5.7) 

Hence the map p is well defined. It is also one-to-one and the associated bundle 
E is bundle isomorphic to the trivial cx principal bundle of T’M, and from now 
on we will consider E as composed of pairs ((m,e’ai), c.exp(27rie’(v)(u,)) and 
identify E with Lx. 

In the last section we saw that the connection r~ = j?* (0) + dA on the principal 
bundle p : AM -, LA4 provides a Lie algebra of vector fields [i on AM that 
leave (T invariant. This Lie algebra is isomorphic to the Lie algebra of rank 
1 Hamiltonian functions HF’ on LM under the Poisson bracket { , }. This 
isomorphism is analogous to the isomorphism of the Lie algebra of vector fields 
<r on L x that leave the connection 6 = rc * (8) + (2rri) -Id z/z on L ’ fixed with 
the Lie algebra of smooth functions on T*M under Poisson bracket. What we 
show here is that the connection 8 on Lx can be induced from the connection 
o on AM. We will also obtain a mapping of the subalgebra of vector fields [f 
on AM defined by elements f E HF 1 onto the subalgebra of vector fields <j on 
Lx for f a linear polynomial observable on T’M. 
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Note first that there are just two orbits of GL( n) on tR”*, namely (0) and 
R”’ - (0). There is a natural projection AM x (IV* x @“) - E given by 
(u, (~i,c)) - Lf(oi,C), where U(CZ~,C) denotes the equivalence class (5.3) 
above. Fix a a non-zero element Q E R”* and an element c E cx and define a 
map w(~,~) : AM - E s Lx by 

W(a,c,(U) = U((%C)) * (5.8) 

Since CY # 0 the maps v/(~,~), for c E cx, map AM onto all of Lx except for the 
section Sc that contains the zero section of T’M. This section is a closed subset 
ofLX. 

For each q E Lx define [ 1 ] the vertical subspace at q as the subspace of 
vectors tangent to the @’ fiber through q. We map the horizontal spaces H,, on 
AM to horizontal spaces & on L” as follows. For each q E Lx - SC, choose 
a u E AM and a pair (cyi, c) E R”” x @’ with CY # 0 such that v(~,~) (u) = q. 
Define the horizontal space & as the image of H,, under the map v(,,,), namely 

fiq = v/(,,c)* (Ha 1 * (5.9) 

We calculate fiq using local coordinates. 
H,, is the set of all tangent vectors X at u E AM such that a(X) = 0, and the 

local coordinate form of such vectors is given in (4.9) above. Let 

q = [((T?7,ei,U),(CXi,C))] = ((m,eicrj),C.exp(2~ie”(v)a,)) 

using the identification (5.6) above. On Lx we use the local coordinates 
(x’,pj, z) defined by 

X’(((~,e’~i),C~exp(27k?((v)~,)) = Xi(M), 
pj(((m,eiai),C.exp(2~ieu(~)~~)) = eicli(i3/t3Xi), 

Z(((m,eiai),C’exp(2~iea(v)cu,)) = c.exp(2ziea(v)a,). (5.10) 

For X E Hu given in (4.9) write 

(5.11) 

Evaluating (5.11) using (4.9) and (5.8) we find that Hq, for q not in Sa, is 
composed of vectors of the form 

f = A’& + Bjai& - 2niAjpj(q)z(g)k . 
J 

(5.12) 

Since Q # 0 and the Bj are arbitrary, Bj,i may be considered as n arbitrary 
constants, which we denote by Bj. Hence Hq, for q not in So, is composed of 
vectors of the form 

W = Ai& + B.a - ZniAjpj(q)z(q)k . 
J dPj 

(5.13) 
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Lemma 5.1. The distribution H of subspaces Hq on Lx - So defined by tangent 
vectors of the form (5.13) is invariant under right translation by 62’ on Lx - So. 

ProoJ The lemma follows easily upon noting that R,, o w(~,~) = v/(~,~,~). 0 

It follows from (5.13) that H defines a complement to the vertical spaces at 
points of Lx - So. Now if the distribution H defined above on Lx - SC, were 
defined on all of Lx then it would define a connection. We will use H to define 
a connection one-form on Lx - Sc and then extend it to all of Lx by continuity. 

Thus let 0 be a one-form on Lx that has the properties of a connection, 
namely 8 (c* ) = c and R; (a) = 8. Here c’ is the fundamental vertical vector 
field determined by c E @, where we consider @ as the Lie algebra of @’ under 
the identification c - exp (2nic). Then c* is given by c’ = 2rcicz d/dz. If 0 
satisfies the above two conditions it must be of the form 

where p is a real-valued one-form on T’M, and where rc : Lx + T’M is the 
projection map. Expressing 8 in local coordinates (X’,pj, z) we have 

5 = Ridx’ + S’dpi + A$, (5.15) 

where Ri and S’ are pull-ups of functions defined on T’M. 
We now require 6 to also satisfy 3 (X) = 0 on Lx - So for X of the form 

given in (5.13 ). We find Ri = pi and Si = 0, and thus our desired one-form on 
Lx - Sc has the local coordinate form 

1 dz 
~5 = pidx’ + 2niy. 

The invariant form of rJ+ on Lx - So is then 

(5.16) 

(5.17) 

By continuity we can extend this one-form to all of Lx so that (5.17 ) gives the 
desired connection one-form. We have shown: 

Theorem 5.1. The connection one-form defined on Lx by the distribution H that is 
induced by the horizontal distribution ofthe connection one-form d = /3* (0) + dA 
on p : AM --$ LM is 0 = x’(8) + (2rri)-‘dz/z. 

Consider the Lie algebra of vector fields ci on AM that satisfy LC,O = 0. These 
vector fields where characterized in section 4 and are of the form cf = XT + qf 
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for .f E HF’ on LM, where Xi is determined by the )z-symplectic structure 
equation on L&f, and where 

tji = fi 0 pd/dJJi (5.18) 

is a vertical vector field. It is clear that the vector fields i.i have the same form 
as the vector fields [f on Lx provided f : T*M + R is a linear polynomial 
observable on T’M. We know that the homogenous part of such observables 
is uniquely related to the momentum mapping defined by Diff (A!), and that 
the homogeneous part of .[ on LM is also uniquely related to the n-momentum 
mapping on LM determined by Diff (A!). The question is whether or not the 
vector fields on Lx can be obtained from the vector fields on AM. First we 
consider the maps. Fixing the pair (cr, c) with (Y # 0 we consider the mapping 
V/(n,c) : AM + LX. The following lemma, which characterizes the many-to-one 
nature of the mappings v/(~,~), follows easily from the definition (5.8). 

Lemma 5.2. The invariance group of the mapping y(n,c) : AM + Lx for a-fixed 
pair (0, c ) with (Y # 0 is the subgroup Gc~,~) c A (n ) defined b)) 

G(,,c) = { (gj,Wk) 1 gj,i = aj , Wiai = n = 0, fl, *2,. . . } . (5.19) 

We now consider the mapping of vectors ci on p : AM + LM to Lx - So. 
We note first that the horizontal lift XT on AM of a vector field Xi on LM is 
invariant under right translation: 

Rt, (X.7, = X;. 

Moreover, a vector field of the form fi o pd/d~~’ satisfies 

R,,(j%W&Ju)) = f’oPWR,,(&#N = .ii4(W-&~~~L 
(5.20) 

since the vertical basis vectors are themselves invariant under right translations 
by elements r E R”. The vertical vector fields rji are thus invariant by right 
translation on /3 : AM + LM. The result is that Rc* ([f ) = Cf. 

Now once again fix an element ((.u, c) E R”’ x @’ with a: # 0. For each [i we 
consider the set of vectors at points in L;o,,Cj c Lx - SO determined by (Q, c) 
defined by 

Wh,c,* ($1 1 (5.21) 

Since W(a,c) is C”, (5.21) will define a smooth vector field on Lyn,Cj provided 
the many-to-one map v(,,~) defines unique vectors on LrQ Cj. 

Let u, U be two points on a common fiber in AM with U = R~I,~J (u) with 
(I,<) E Gc,,~). Then 

w(w)(~) = ~(n,c) 0 R(I&) = v/(w)(u) . (5.22) 
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Using Rc, (ci) = cf and (5.22) one can show that 

V/(a,c)* qw = Yqa,c)*Kp)) (5.23) 

when tl = R~~,cJ (u) with (Z,t) E Gc~,~J. Hence each vector field cf does indeed 
define a vector field on L;a,c). Since we must use a different map w(~,~) for each 
c, we need to check that we get unique tangent vectors as c varies. We will show, 
by looking at the local coordinate formula for v/(~,~)* ([f), that we get unique 
tangent vectors and that they may be extended from the open submanifolds 

L;a c) to include the closed subset Sa. 
Aow each cr has the form given in (4.17) above, and the image of the hori- 

zontal part X7 has the form given in (5.12). We use (5.12) rather than (5.13) 
here because we will rewrite the middle term when X has the special form of a 
[/. Using (5.18) one shows that 

V/C~,~)* (qf) = 27Ti(f^j)CYjZd/dZ . 

Hence at points of L&, we have that 

(5.24) 

W(,,C)*(C~) = 
( 

Ai& + BJni~-2niA'pj(4)z(4)~ 
J 1 

+ Zrti(fj)CkjZ& 
( 1 

, (5.25) 

There are two cases to consider. 
CaseI.j~T’cHF’.InthiscasejandXionLM[see(2.14)]andr/on 

AM are given in local coordinates by 

Using these results in (5.25) we have for f E T’: 

V//(a,c)* ($1 = ( f’(x) & - afa a 
, ~ltbCXi- - 271if j(X)pjZ A 

apj 1 

( 
a 

+ 27lif”(X)~~ajZ~ 
) 

. 

(5.26) 

(5.27) 

Since 7~; (m, ei)aj = pk (m, e’ai) the vertical components in this last equation 
cancel. Moreover, the remaining parts are smooth on all of Lx and are indepen- 
dent of choice of c. Hence we have: 
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Lemma 5.3. For .i E T’ c HF’ the vector field v/(~,~)+ (ii) on Lx determined 
bv [,f on AM has the local coordinate form 

(5.28) 

Remark. This vector field is the vector field [/ on Lx that one obtains from 
X.f on T’M when f E Co3(T*M,R) is the momentum P(f) of a vector field 
f = f'(x)El/d2 on M. 

Case II.! E P(M,KP). In this case f and Xj on LM [see (2.14)] and if 
on AM are given in local coordinates by 

f = f’(X)Pi, 

Using this result back in (5.25) we find 

W(a,c) Kj 1 = . 

(5.29) 

(5.30) 

Now we recall that we have fixed (I: # 0. Hence f i (x )a~ is, for each f = 
f i (x)~, a real-valued function on L” that is constant on fibers. We introduce 
the notation 

./i(X) = f’(X)Qi (5.31) 
for such functions. Then we may rewrite (5.30) as 

V/(w) ($1 = (-s$-) + (?nifdA) . (5.32) 

This is smooth on all of Lx and independent of choice of c. We have the result: 

Lemma 5.4. For f E C’” (M,W) c HF’ the vector field v/(,,~)* (Tf) on Lx 
determined by a fixed non-zero LY E Iw”’ and li on AM has the local coordinate 
form 

V(,,c,* K$ = (-Sk) + (2nifdA), (5.33) 

where fa(x) = f'(x)ai. 

Remark. This vector field is the vector field [,- on Lx that one obtains from X/ 
on T*M when f E C” (T’M, R) is the function r* (f i (x)cri), where r is the 
projection T : T’M + M. 
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Finally in this section we show that the equivalence class [Xi ] of Hamiltonian 
vector fields determined by f E STp can be mapped to the Hamiltonian vector 
field Xl on T’M determined by f’ : T*M + R, where f is the homogeneous 
degree p polynomial observable on T’M induced by f as in (2.20). Consider 
T’M as the associated bundle LM x or&~[W~*,andfixanon-zero& = (cyj) E W’. 
Then define the map va : LM + T’M - 30, where &, is the zero section of T’M, 
by 

v/a(u) = u(a) = L&Q]. (5.34) 

This map, like the map I,u(~,~) discussed above, is a many-to-one map with yap (u. 
h ) = vcV (11) for h E G, c GL( n ), where G, is the stability group of cr. 

Theorem 5.2. Let f E STP, let [Xi] be the associated equivalence class of 
Hamiltonian vector’ fields determined by (2. I I), and let j: be the degree p homo- 
geneous polynomial observable on T’M determined by f as in (2.20). Then 

X = p!lv,*(X,fi’iz”‘ip-‘~i,~i2 “‘ CYj,-,) , (5.35) 

,vhere xiiii2~-ip-l denotes any set of representatives of [X.i 1, is a vector field on 
T’M - 30, and X = Xf. 

The proof of this theorem is given in the appendix. The essential points to 
notice are that ( 1) the arbitrariness in the definition of the Hamiltonian vector 
fields cancels out under the mapping (5.35), and (2) the many-to-one map I+V~ 
determines a vector field on T’M - $0 because of the tensorial nature of the 
explicitly determined part of the Hamiltonian vector fields. 

6. Examples of n-momentum mappings 

6.1. LINEAR MOMENTUM 

Let M = IP , G = W, and let G act on M by translations: 

Q,:GxM-tM:(~,rn)--,~+rn. (6.1) 

The infinitesimal generator corresponding to < E R” is &l(m) = <‘a/ax’. By 
(3.5)-(3.7) the n-momentum on LM associated with < is 

j(t)(U) = n(<)(U) = t(U) = r’nj(U)rj (6.2) 

and hence the n-momentum mapping is 

or simply 

J(U) = iTi(U)I.‘&rj, (6.3) 

J - jr.@,.’ = njri@).. 
- I I J . (6.4) 
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Hence J (10 has an interpretation as a momentum ji-ame rather than simply a 
momentum. Note that from (6.3) with u = (nz, ei) we have 

J(U) = Tlj(U)ri8rj 

= ej(a/axi)ri @ rj . (6.5) 

Thus the W’ @ W components J(u){ = d(d/dxi) of J at 11 E LM give the 
components of the linear frame (ei) with respect to the coordinated linear frame 
(aja.9). 

6.2. ANGULAR MOMENTUM 

LetM=WandletG=SO(p,q).LetGactonMby: 

@:GxM+M:(T,m)-+Tm. (6.6) 

The infinitesimal generator corresponding to B = BjE! E 4 c L (W, R”) is 
By = Bjsj(m) d/ax’, where (Ef’) is a basis of G. Then from (3.5)-(3.7) 
the n-momentum associated with B is 

j(B)(u) = 17(B)(u) = 8 = Bjsj(~n)n;(u)r.~ , (6.7) 

and the n-momentum mapping is 

J(u) - (u’(m)n~(u))C~@ rk - I I J ’ (6.8) 

where (Cj) is the basis of G* dual to the basis (Ej). 
Take the special case when n = 4 and G = SO( 1,3) with M equipped with 

the Minkowski metric tensor g = rlij d/ax’ @ a/ax-j. Then for B E so( 1,3) we 
have 

BAf = B;Xj a/ax’ , (6.9) 

which is a Killing vector field on M. j(B) (to then gives the components of 
BAG with respect to the linear frame u = (t?r,ei). Since the C’i are qij skew 
symmetric, the four-momentum (6.8) can be written as 

J = (XJKf)qjt,,C”” @ l’k 

= (l/2) (Xtn7tf - Xi7Z$)Cin’ @ Yk , (6.10) 

which has the form of a generalized angular momentum. Here C’*’ = $jCy. 
The explicit form of the conserved quantities follows from theorem 3.1 upon 

taking ,& = qabrt6njbri@rj E ST2 as the Hamiltonian tensor on LM. g is invariant 
under the lifted action of SO ( 1,3) to LM. The Hamiltonian vector fields Xi are 

xii = fbn6ajaXb. (6.11) 

From theorem 3.1 each J’, i = 0, 1,2,3, is constant along the flow of Xi’ for 
the same i. It is straightfotward to show that one obtains six independent con- 
served quantities, which correspond to the standard three angular momentum 
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conservation laws together with the three laws giving the finite form of Lorentz 
boosts (see, for example, ref. [ 131, pp. 93-94). 

7. Conclusions 

The cotangent bundle T’h4 of an It-dimensional manifold M is regarded as the 
canonical model of a symplectic manifold. This is because each cotangent bundle 
T’h4 has an intrinsic and naturally defined symplectic two-form d6, where t9 
is the canonical one-form on T’M, and every symplectic manifold “looks like” 
a cotangent bundle locally. What we have shown in this paper is that much, if 
not all, of the symplectic geometry on (T*M, d8) is induced from n-symplectic 
geometry on the bundle of linear frames LM of the manifold, where the n- 
symplectic potential on LM is the P-valued soldering one-form 0. Specifically, 
we have shown: 

( 1) The soldering one-form 8 induces the canonical one-form r9 as in ( 1.1). 
(2) Each symmetric &R”-valued tensorial observable f E STP on LM in- 

duces a degree p homogeneous polynomial observable / on T’M as in (2.20). 
Moreover, the equivalence class [X.i I] of & P-‘R”-valued Hamiltonian vector 
fields determined by j E STP maps to the Hamiltonian vector field of f on 
T’M as in (5.35). 

(3) The n-symplectic action of Diff (M) and the associated n-symplectic mo- 
mentum mapping on LM induce the symplectic action of Diff (M) and the 
associated momentum mapping on T*M as given in (3.9) and (3.10), respec- 
tively. 

Hence those features of symplectic geometry on T’M associated with the 
polynomial observables may be considered as induced from the n-symplectic 
geometry of symmetric tensorial observables on LM. We have not shown that 
the symplectic geometry of arbitrary observables on T’M is induced from n- 
symplectic geometry on LM, and whether or not this happens is an open question 
at this moment. 

On the other hand the polynomial observables on T’M play a distinguished 
role in physical theories, especially in the theory of geometric quantization. In 
the case of geometric quantization formulated on T’M, where M is the con- 
figuration space of a mechanical system, one uses the symplectic potential B to 
construct a connection 6 on a trivial cx bundle rr : Lx + T’M in order to 
construct the quantum operators associated with the observables on the phase 
space T’M. These quantum operators may be defined in terms of the vector 
fields [/ on Lx that leave the connection 5 invariant. The map f -+ CJ for 
J- E C” (T*M, R) is a linear isomorphism from the Lie algebra of observables 
on T’M under the Poisson bracket to the Lie algebra of vector fields c/ under 
the Lie bracket. In the applications of the general theory [6,7] the operators 



74 L. K. Norris / Synplectic geometry ou T’ 111 

associated with the linear polynomial observables on T’M play an especially 
important role. We have shown in this paper that a good deal of this structure 
can also be traced back to LM. In particular we have shown: 

(4) The n-symplectic potential 8 may be used to construct a connection cr 
(lemma 4.1) on the bundle of aftine frames p : An4 -+ LM, which is a trivial 
IIF principal bundle over LM. There is a linear isomorphism S + CS from 
the Lie algebra of R”-valued linear polynomial observables f on LM under the 
Poisson bracket to the Lie algebra of vector fields [.i that leave the connection 
cr invariant (theorem 4.1). 

(5)The Cx bundle rc : Lx --) T’M may be identified with a fiber bundle 
associated to AM. Moreover, the connection g on p : AM + LM induces the 
connection 3 on Lx discussed above (theorem 5.1). 

(6) The vector fields [/ on ,U! may be mapped onto the subalgebra of vec- 
tor fields cf on Lx associated with the linear polynomial observables on T’M 
(lemmas 513 and 5.4). 

The results presented in this paper show that at least for polynomial observ- 
ables one may replace canonical symplectic geometry on T’M with n-symplectic 
geometry on the bundle of linear frames LM. But what is gained by replac- 
ing symplectic geometry based on the R-valued symplectic potential 8 with n- 
symplectic geometry based on the IW”-valued n-symplectic potential t9? The an- 
swer lies in the new information one obtains from n-symplectic geometry about 
the relationship between observables and the associated Hamiltonian vector 
fields. 

Canonical symplectic geometry on T’M assigns to each polynomial observ- 
able, regardless of its degree, a single Hamiltonian vector field. On the other 
hand, n-symplectic geometry assigns to a pth degree symmetric polynomial ob- 
servable f E STP an equivalence class lJXi] of B’S p-1 R”-valued vector fields, and 
a representative of [Xi] contains (“i”r2) Hamiltonian vector fields 
xiji2.,.iP-, . These sets of Hamiltonian vector fields associated with degree p > 2 
sy’mmetric polynomial observables provide new insights into the geometry and 
physics of such observables. We have shown in theorem 5.2 that the arbitrariness 
in the definition of the equivalence classes determined by polynomial observ- 
ables cancels out when they are mapped to, and collapsed into, a single Hamil- 
tonian vector field on T’M. The equivalences classes thus represent a type of 
“gauge freedom” that is not detectable by symplectic geometry on T’M. 

As a specific example consider a four-dimensional Riemannian spacetime M 
with metric tensor g. The free particle problem in the spacetime AY is formu- 
lated in symplectic geometry on T’M as follows. The metric tensor g defines a 
homogeneous quadratic polynomial observable on T’M, which we denote by g, 
and the free particle Hamiltonian is then fi = 2, where for simplicity we have 
chosen m = l/2 for the mass of the particle. The dynamics of the free particle 
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is given by the single Hamiltonian vector field XR, and integration of Xp, with 
time-like initial conditions, tells us ( 1) that the trajectory on M of the particle 
is a geodesic of the Levi-Civita connection determined by g, and (2) that the 
particle parallel transports its four-momentum along the geodesic. 

The formulation of the problem in four-symplectic geometry on LM is as 
follows. The metric tensor g determines an element g E ST2, and we take 
fi = g for the free particle Hamiltonian tensor. The dynamics is now specified 
by the equivalence class of Hamiltonian vector fields [Xan = I[XRj’ri. A 
representative of the equivalence class is composed of four Hamiltonian vector 
fields [see (2.16)], 

where i = 1,2,3,4. The gauge freedom is specified by the components TF, 
which must satisfy T!‘” h = 0 but are otherwise arbitrary. Since the structures of 
the Poisson algebra (ST, { , } ) and the Lie algebra of the associated equivalence 
classes of Hamiltonian vector fields are independent of choice of representatives 
we are free to set a gauge condition to select a representative set of vector fields. 
The gauge condition [ 41 

XL-I Xi-l dek=O Vi,j,k 

determines a unique representative set of vector fields 

X,$ = gijBj, 

(7.2) 

(7.3) 

where the four vector fields Bj are the standard horizontal vector fields of the 
Levi-Civita connection og on LM determined by g. Integration of any one 
of the vector fields XL, with time-like initial conditions, now tells us (1) that 
the trajectory on M o the particle is a geodesic of the Levi-Civita connection 7 
og determined by g, and (2) that the particle parallel transports a full linear 
frame along the geodesic with the time-like leg of the frame being the paral- 
lel transported four-momentum of the particle. The extra information that is 
not contained in the formulation of the problem on T’M, namely the parallel 
transport of a spatial triad along a geodesic, together with the parallel transport 
of the four-momentum along the geodesic, provides the complete and correct 
description of a freely falling, non-rotating particle. 

There is more that one can say concerning these “free” systems on spacetime. 
On T’M the constant energy surfaces to which Xn is tangent are the surfaces on 
which fi = g are constant. The analogue on LM are the orthonormal subbundles 
obtained from the canonical orthonormal subbundle OM by conjugation. The 
vector fields in (7.3) are tangent to these subbundles, and the Hamiltonian tensor 
k = g is constant on each of these subbundles. Hence the n-symplectic phase 
space LM can be thought of as the phase space of observers, since the dynamics 
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described above is what is normally thought of as the dynamics of freely falling, 
non-rotating inertial observers on spacetime. This interpretation is consistent 
with the interpretation given in sections 3 and 6 of the rz-momentum mapping 
associated with Diff (I??) as providing a momentum frame rather than simply 
momentum. 

The new features present in n-symplectic geometry also offer the possibility of 
providing new insights in the theory of geometric quantization. As discussed at 
the end of section 4 the Hamiltonian vector fields for momentum and position 
type variables on LM lift to operators on An! -+ LM that provide the Dirac 
quantization rules that mirror analogous results in the standard geometric quan- 
tization theory. In both cases the momentum and position type variables lead 
to single Hamiltonian vector fields. On the other hand we have seen above that 
in four-symplectic geometry the quadratic Hamiltonian based on the spacetime 
metric tensor leads to the set of four Hamiltonian vector fields given in (7.3) 
above. It is clear that this set of Hamiltonian vector fields offers new possibilities 
for constructing quantum operators associated with the “free Hamiltonian” that 
are not available in the standard theory. Consider a spacetime manifold that 
admits a spin structure. In ref. [4] it is argued that the assignment 

(7.4) 

where the yi are the Dirac matrices, is a natural formulation of the Dirac operator 
when the Xi’ are lifted to the spin bundle over the the bundle of orthonormal 
frames. More details on how one accomplishes this lifting will be reported in a 
future publication [ 141. 

There are many details that have not been addressed in this paper concerning 
the structure of a geometric quantization theory based on n-symplectic geome- 
try. Among other things we have not indicated how one can lift the vector-valued 
Hamiltonian vector fields for arbitrary allowable observables, nor have we ad- 
dressed the problem of constructing polarizations and the associated Hilbert 
spaces for the momentum and position type prequantization operators obtained 
in section 4. We hope to return to these and other related problems in future 
papers. 

Appendix 

A. 1. PROOF OF THEOREM 3.1 

The proof is essentially the same as the proof of theorem 4.2.2, page 277 in 
ref. [lo]. 

For each l E 6 we have g ( aPexpcrCj (u) ) = g(u) since S is invariant. Differ- 
entiating at t = 0 we have 

di(L\d) = 0, (A.11 
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which implies that 
Lx,,,, (3 = 0 . 

Since we know that j(g) = j’(<)ri E NF’, (A.2) implies that 

{.m,g} = 0. 

Hence by lemma 3.1 we know that 

ji(<) (F,‘(u)) = ji(<) (u) for all Lj E 6 . 

By the definition of n-momentum mapping this implies 

J’(&%L)) = J’(u). 0 

(~4.2) 

(A.3) 

(A.4) 

(A.51 

A.2. PROOF OF THEOREM 5.2 

We give a local coordinate proof of the theorem. Using the map va defined 
in (5.34) it is easy to verify the formulas 

ya* (a/ax’) = a/ax’ , (-4.6) 

Adam:) = Cyawpb. (-4.7) 

First suppose p 2 2 and fix a point u E LA4 and let w = V/LI (u). We eval- 
uate (5.35) at u using (A.6), (A.7) and the local coordinate expressions for 

-Ti i1i2”‘i~-l (u) given in (2.14). 

P!VV(n,c)* c-J+ ili2-ip--l (u)cyi,c-yi2 . . . cyip-, ) 

$w) 
a 

(A.81 
We, note that when p = 1 the last term involving the arbitrary component 
T;l12.,.ip-lb does not occur in this formula, and when p 2 2 the last term in (A.8) 
vanishes by (2.15) since 

T~‘i’“‘i’-‘b(U)Oli,(Yi2 ‘. ’ ~i,_,cyb = Ta (ili24Plb) (U)CYi,Qi2 . . . cuip-,Qb . (A.9) 

Using Xj(u)ai = pj(W) back in (A.8) we obtain forp 2 1 

P!V/(a,c)* c-J+ ili2-.ip-i (u)ai,ai2.. . Qiip-,) 

= pfj’j2”‘iP-‘k(X)Pj, (W)pj?(W) “‘pj,-, (W)&(w) 

af j I j2 . ,iP 
-  axa Pj,(W)Pj2(W)“‘Pjp(W) (A.lO) 
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This vector at UI E T*M is Xy (w ), where XJ is the Hamiltonian vector field of 
the function f’ determined by .f by (2.20). 

We still need to check that we get unique tangent vectors on T’M from the 
many-to-one map v/n. Denote right translation on LM by h E GL ( II ) by RI,, and 
let U = Rh(u) for h E G, so that jzjcui = aj and v/n(i) = V,(U). Then using 
(2.2) we have 

~j(ii)t~i = ~lj(Rh(~))al = (h-‘)kn$(u)ai = x$(z~)Q~. (A.ll) 

Hence if we rewrite (A.8) with u replaced everywhere by ii we again obtain 
(A.10). q 
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